neuroimagen:mri_deface
Table of Contents
mri deface
Prueba
https://surfer.nmr.mgh.harvard.edu/fswiki/AutomatedDefacingTools
[osotolongo@detritus facehbi]$ /nas/usr/local/bin/mri_deface_linux bids/sub-0001/anat/sub-0001_T1w.nii.gz /nas/usr/local/share/mri_deface/talairach_mixed_with_skull.gca /nas/usr/local/share/mri_deface/face.gca deface/sub-0001_T1w_defaced.nii.gz logging results to sub-0001_T1w_defaced.nii.log reading '/nas/usr/local/share/mri_deface/talairach_mixed_with_skull.gca'... reading 'bids/sub-0001/anat/sub-0001_T1w.nii.gz'... changing type of input volume to 8 bits/voxel... MRIchangeType: Building histogram bounding unknown intensity as < 10.3 or > 1461.6 total sample mean = 111.8 (0 zeros) spacing=8, using 2055 sample points, tol=1.00e-03... resetting wm mean[0]: 143 --> 144 resetting gm mean[0]: 89 --> 89 input volume #1 is the most T1-like using real data threshold=7.0 skull bounding box = (48, 17, 11) --> (211, 255, 216) using (102, 96, 114) as brain centroid... mean wm in atlas = 144, using box (82,67,89) --> (122, 125,139) to find MRI wm before smoothing, mri peak at 133 robust fit to distribution - 134 +- 8.9 after smoothing, mri peak at 134, scaling input intensities by 1.075 scaling channel 0 by 1.07463 initial log_p = -4.7 after initial translation: (-5.7, 19.3, -5.7): log p = -4.3 scale 1.000: max=-3.9, old_max =-4.3 (thresh=-4.2) scale 1.000: max=-3.8, old_max =-3.9 (thresh=-3.9) scale 1.000: max=-3.8, old_max =-3.8 (thresh=-3.8) reducing scale to 0.2500 .... .... .... anonymizing volume... using wm = 107.0, gm = 93.4 wm covar: 502.39935; gm covar: 659.34979; ......................... 1058443 face voxels erased, 250588 ambiguous voxels retained resampling to original coordinate system... writing anonymized volume to deface/sub-0001_T1w_defaced.nii.gz... deidentification took 2 minutes and 54 seconds.
en paralelo
- deface.py
#!/usr/bin/env python2 import subprocess import re import os from slurm import send_sbatch defacer = '/nas/usr/local/bin/mri_deface_linux' def_dir = '/nas/usr/local/share/mri_deface/' tal_gca = def_dir+'talairach_mixed_with_skull.gca' face_gca = def_dir+'face.gca' finder = 'find /nas/data/facehbi/bids/sub-* -name "*.nii.gz"' outdir = '/nas/data/facehbi/defaced/' time = '2:0:0' cpus = 4 wdir = os.environ.get('PWD') if not os.path.isdir(outdir): os.mkdir(outdir) ifiles = subprocess.check_output('find /nas/data/facehbi/bids/sub-* -name "*.nii.gz"', shell=True).split('\n') for ifile in ifiles: if os.path.exists(ifile): cdata = {'time':time, 'cpus':4, 'job_name':'deface'} ofile = re.sub('bids','defaced/bids',ifile) dst_dir = os.path.dirname(ofile) if not os.path.isdir(dst_dir): os.makedirs(dst_dir) order1 = defacer+' '+ifile+' '+tal_gca+' '+face_gca+' '+ofile jfile = re.sub('\.nii\.gz','.json',ifile) ojfile = re.sub('\.nii\.gz','.json',ofile) order2 = 'cp '+jfile+' '+ojfile name = os.path.basename(ifile).split('.')[0] cdata['filename'] = wdir+'/deface_'+name+'.sh' cdata['output'] = wdir+'/deface_'+name+'.out' cdata['command'] = order1+'\n'+order2+'\n' send_sbatch(cdata) mdata = {'job_name':'deface', 'filename':wdir+'/deface_end.sh', 'output':wdir+'/deface_end.log', 'dependency':'singleton'} send_sbatch(mdata)
neuroimagen/mri_deface.txt · Last modified: 2020/12/03 15:55 by osotolongo