neuroimagen:altdti
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
neuroimagen:altdti [2019/03/15 09:53] – [Composites] osotolongo | neuroimagen:altdti [2020/08/04 10:58] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1022: | Line 1022: | ||
R2: 0.301108942185496 | R2: 0.301108942185496 | ||
</ | </ | ||
+ | |||
+ | y eso es lo mejorcito. Vamos a mirar un poco mejor los //APOE 2// (N=38) :-/, que tienen la mejor asociacion. | ||
+ | <code R> | ||
+ | > m1 <- lm(okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + okdata2$Edad + okdata2$Escolaridad + okdata2$female + okdata2$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + | ||
+ | okdata2$Edad + okdata2$Escolaridad + okdata2$female + okdata2$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -1.56334 -0.50510 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata2$DMN | ||
+ | okdata2$Edad | ||
+ | okdata2$Escolaridad | ||
+ | okdata2$female | ||
+ | okdata2$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.7156 on 32 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | Voy a limpiar un poco a ver, | ||
+ | <code R> | ||
+ | > m1 <- lm(okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + okdata2$female + okdata2$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + | ||
+ | okdata2$female + okdata2$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -1.72431 -0.45826 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata2$DMN | ||
+ | okdata2$female | ||
+ | okdata2$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.7159 on 34 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | un poco mas, | ||
+ | |||
+ | <code R> | ||
+ | > m1 <- lm(okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + okdata2$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + | ||
+ | okdata2$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -1.60347 -0.37573 -0.05682 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata2$DMN | ||
+ | okdata2$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.7333 on 35 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | Vaya, no esta tan mal. | ||
+ | |||
+ | A ver si encajo esto de alguna manera, | ||
+ | |||
+ | //APOE 0// | ||
+ | < | ||
+ | > m1 <- lm(okdata0$funcioExecutiva_velocprocess_IM ~ okdata0$DMN + okdata0$Escolaridad + okdata0$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata0$funcioExecutiva_velocprocess_IM ~ okdata0$DMN + | ||
+ | okdata0$Escolaridad + okdata0$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -0.88656 -0.46872 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error t value Pr(> | ||
+ | (Intercept) | ||
+ | okdata0$DMN | ||
+ | okdata0$Escolaridad -0.11401 | ||
+ | okdata0$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.6454 on 22 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | //APOE 1// | ||
+ | < | ||
+ | > m1 <- lm(okdata1$funcioExecutiva_velocprocess_IM ~ okdata1$DMN + okdata1$Escolaridad + okdata1$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata1$funcioExecutiva_velocprocess_IM ~ okdata1$DMN + | ||
+ | okdata1$Escolaridad + okdata1$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.3510 -0.6597 -0.1832 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error t value Pr(> | ||
+ | (Intercept) | ||
+ | okdata1$DMN | ||
+ | okdata1$Escolaridad | ||
+ | okdata1$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.9785 on 86 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | //APOE 2// | ||
+ | < | ||
+ | > m1 <- lm(okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + okdata2$Escolaridad + okdata2$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$DMN + | ||
+ | okdata2$Escolaridad + okdata2$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -1.62197 -0.38893 -0.06813 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata2$DMN | ||
+ | okdata2$Escolaridad | ||
+ | okdata2$SUVR | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.7369 on 34 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | **Hasta ahora:** En los sujetos con el alelo $\epsilon$-4 presente, la variable // | ||
+ | ==== Variables de MB ==== | ||
+ | Hay un interes especial en las variables de los tesst " | ||
+ | <code bash> | ||
+ | > awk -F";" | ||
+ | > scp -P 20022 facehbi_data_mb.csv detritus.fundacioace.org: | ||
+ | facehbi_data_mb.csv | ||
+ | </ | ||
+ | Los cargo, hago un composite con estas variables y miro los modelos. | ||
+ | < | ||
+ | > fdata < | ||
+ | > fapoe < | ||
+ | > fdti <- read.csv(" | ||
+ | > okdata <- merge(fdata, | ||
+ | > okdata <- merge(okdata, | ||
+ | > okdata$zPPp = (okdata$PPp - mean(okdata$PPp, | ||
+ | > okdata$zPPi = (okdata$PPi - mean(okdata$PPi, | ||
+ | > okdata$zKDi = (okdata$KDi - mean(okdata$KDi, | ||
+ | > okdata$zKDp = (okdata$KDp - mean(okdata$KDp, | ||
+ | > np <- data.frame(okdata$zPPp, | ||
+ | > fanp <- fa(np) | ||
+ | > okdata$scop <- fanp$scores | ||
+ | > m1 <- lm(okdata$scop ~ okdata$DMN + okdata$Edad + okdata$Escolaridad + okdata$female + okdata$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata$scop ~ okdata$DMN + okdata$Edad + okdata$Escolaridad + | ||
+ | okdata$female + okdata$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -3.7621 -0.2453 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata$DMN | ||
+ | okdata$Edad | ||
+ | okdata$Escolaridad | ||
+ | okdata$female | ||
+ | okdata$SUVR | ||
+ | |||
+ | Residual standard error: 0.8891 on 68 degrees of freedom | ||
+ | (80 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | > m1 <- lm(okdata$scop ~ okdata$FPCustom + okdata$Edad + okdata$Escolaridad + okdata$female + okdata$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata$scop ~ okdata$FPCustom + okdata$Edad + okdata$Escolaridad + | ||
+ | okdata$female + okdata$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -3.8339 -0.2617 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata$FPCustom | ||
+ | okdata$Edad | ||
+ | okdata$Escolaridad | ||
+ | okdata$female | ||
+ | okdata$SUVR | ||
+ | |||
+ | Residual standard error: 0.8903 on 68 degrees of freedom | ||
+ | (80 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | > okdata0 <- okdata[okdata$APOE == " | ||
+ | > m1 <- lm(okdata0$scop ~ okdata0$FPCustom + okdata0$Edad + okdata0$Escolaridad + okdata0$female + okdata0$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata0$scop ~ okdata0$FPCustom + okdata0$Edad + | ||
+ | okdata0$Escolaridad + okdata0$female + okdata0$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | 19 | ||
+ | | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata0$FPCustom | ||
+ | okdata0$Edad | ||
+ | okdata0$Escolaridad | ||
+ | okdata0$female | ||
+ | okdata0$SUVR | ||
+ | |||
+ | Residual standard error: 1.142 on 2 degrees of freedom | ||
+ | (18 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | > okdata1 <- okdata[okdata$APOE == " | ||
+ | > m1 <- lm(okdata1$scop ~ okdata1$FPCustom + okdata1$Edad + okdata1$Escolaridad + okdata1$female + okdata1$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata1$scop ~ okdata1$FPCustom + okdata1$Edad + | ||
+ | okdata1$Escolaridad + okdata1$female + okdata1$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.7087 -0.3229 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata1$FPCustom | ||
+ | okdata1$Edad | ||
+ | okdata1$Escolaridad | ||
+ | okdata1$female | ||
+ | okdata1$SUVR | ||
+ | |||
+ | Residual standard error: 0.6507 on 38 degrees of freedom | ||
+ | (46 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | > okdata2 <- okdata[okdata$APOE == " | ||
+ | > m1 <- lm(okdata2$scop ~ okdata2$FPCustom + okdata2$Edad + okdata2$Escolaridad + okdata2$female + okdata2$SUVR) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$scop ~ okdata2$FPCustom + okdata2$Edad + | ||
+ | okdata2$Escolaridad + okdata2$female + okdata2$SUVR) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -3.6076 -0.3908 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error t value Pr(>|t|) | ||
+ | (Intercept) | ||
+ | okdata2$FPCustom | ||
+ | okdata2$Edad | ||
+ | okdata2$Escolaridad | ||
+ | okdata2$female | ||
+ | okdata2$SUVR | ||
+ | |||
+ | Residual standard error: 1.285 on 16 degrees of freedom | ||
+ | (16 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | Con lo cual me convenzo de que esto no vale para nada. | ||
+ | |||
+ | ===== Todas las redes ===== | ||
+ | |||
+ | No creo que funcione pero por completitud debo hacer el mismo procedimiento para todas las redes que hemos medido, esto es: DMN, FPCustom, LN y SN. | ||
+ | |||
+ | <code bash> | ||
+ | [osotolongo@detritus facehbi]$ awk -F";" | ||
+ | [osotolongo@detritus facehbi]$ awk -F";" | ||
+ | [osotolongo@detritus facehbi]$ awk -F";" | ||
+ | [osotolongo@detritus facehbi]$ awk -F";" | ||
+ | [osotolongo@detritus facehbi]$ join -t";" | ||
+ | [osotolongo@detritus facehbi]$ head facehbi_fa.csv | ||
+ | Subject; | ||
+ | 001;;;; | ||
+ | 002;;;; | ||
+ | 003;;;; | ||
+ | 004; | ||
+ | 005; | ||
+ | 006; | ||
+ | 007; | ||
+ | 008; | ||
+ | 009; | ||
+ | [osotolongo@detritus facehbi]$ cp facehbi_fa.csv ~/ | ||
+ | </ | ||
+ | |||
+ | voy a cambiar el script de R para que me de algo mas de info, | ||
+ | |||
+ | <code R> | ||
+ | library(QuantPsyc) | ||
+ | x< | ||
+ | Color=c(" | ||
+ | scan(" | ||
+ | scan(" | ||
+ | sink(file = " | ||
+ | |||
+ | for(i in 1: | ||
+ | for(j in 1: | ||
+ | y.data <- x[c(ni[j], np[i], " | ||
+ | y.data <- y.data[complete.cases(y.data), | ||
+ | a <- lm( paste (' | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | beta <- lm.beta(a) | ||
+ | for(k in 1: | ||
+ | writeLines(paste(names(beta[k]), | ||
+ | } | ||
+ | writeLines(paste(" | ||
+ | } | ||
+ | } | ||
+ | sink() | ||
+ | </ | ||
+ | y a probar con los composites de nuevo, | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ cat nivars.names | ||
+ | DMN_FA | ||
+ | LN_FA | ||
+ | SN_FA | ||
+ | FPCustom_FA | ||
+ | [osotolongo@detritus dti_model]$ cat npvars.names | ||
+ | funcioExecutiva_fluencia | ||
+ | funcioExecutiva_velocprocess_IM | ||
+ | funcioExecutiva_atencio | ||
+ | memoria_fnameProf | ||
+ | memoria_fnameNom | ||
+ | memoria_wms | ||
+ | memoria_rbans | ||
+ | gnosia | ||
+ | praxia | ||
+ | llenguatge_denom_IM | ||
+ | </ | ||
+ | Empiezo con el global, | ||
+ | <code R> | ||
+ | > fdti <- read.csv(" | ||
+ | > fdata < | ||
+ | > fapoe < | ||
+ | > okdata <- merge(fdata, | ||
+ | > okdata <- merge(okdata, | ||
+ | > write.csv(okdata, | ||
+ | > source(" | ||
+ | Read 10 items | ||
+ | Read 4 items | ||
+ | </ | ||
+ | movemos los resultados, | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ mv facehbi_dti_np_models.txt facehbi_dti_np_models_all.txt | ||
+ | </ | ||
+ | y ahora a estratificar, | ||
+ | <code R> | ||
+ | > okdata0 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata0, | ||
+ | > source(" | ||
+ | Read 10 items | ||
+ | Read 4 items | ||
+ | </ | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ mv facehbi_dti_np_models.txt facehbi_dti_np_models_0.txt | ||
+ | </ | ||
+ | <code R> | ||
+ | > okdata1 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata1, | ||
+ | > source(" | ||
+ | Read 10 items | ||
+ | Read 4 items | ||
+ | </ | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ mv facehbi_dti_np_models.txt facehbi_dti_np_models_1.txt | ||
+ | </ | ||
+ | <code R> | ||
+ | > okdata2 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata2, | ||
+ | > source(" | ||
+ | Read 10 items | ||
+ | Read 4 items | ||
+ | </ | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ mv facehbi_dti_np_models.txt facehbi_dti_np_models_2.txt | ||
+ | </ | ||
+ | y lo voy a guardar, por si acaso, | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ tar czvf facehbi_dti_np_models.tgz facehbi_dti_np_models_* | ||
+ | facehbi_dti_np_models_0.txt | ||
+ | facehbi_dti_np_models_1.txt | ||
+ | facehbi_dti_np_models_2.txt | ||
+ | facehbi_dti_np_models_all.txt | ||
+ | </ | ||
+ | |||
+ | **Nota:** Estos hay que revisarlos despacio pues puede haber alguna asosiacion con el SUVR que hayamos pasado por alto. | ||
+ | |||
+ | Ahora el otro composite, | ||
+ | <code R> | ||
+ | > fdata < | ||
+ | > okdata <- merge(okdata, | ||
+ | > okdata$zPPp = (okdata$PPp - mean(okdata$PPp, | ||
+ | > okdata$zPPi = (okdata$PPi - mean(okdata$PPi, | ||
+ | > okdata$zKDi = (okdata$KDi - mean(okdata$KDi, | ||
+ | > okdata$zKDp = (okdata$KDp - mean(okdata$KDp, | ||
+ | > mb <- data.frame(okdata$zPPp, | ||
+ | > okdata$cs <- mbsc$scores | ||
+ | </ | ||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ cat npvars.names | ||
+ | cs | ||
+ | </ | ||
+ | <code R> | ||
+ | > write.csv(okdata, | ||
+ | > source(" | ||
+ | Read 1 item | ||
+ | Read 4 items | ||
+ | </ | ||
+ | y lo hago estratificado tambien, (moviendo los outputs como antes) | ||
+ | <code R> | ||
+ | > okdata0 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata0, | ||
+ | > source(" | ||
+ | Read 1 item | ||
+ | Read 4 items | ||
+ | > okdata1 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata1, | ||
+ | > source(" | ||
+ | Read 1 item | ||
+ | Read 4 items | ||
+ | > okdata2 <- okdata[okdata$APOE == " | ||
+ | > write.csv(okdata2, | ||
+ | > source(" | ||
+ | Read 1 item | ||
+ | Read 4 items | ||
+ | </ | ||
+ | y aqui si no hay nada de nada. | ||
+ | Voy a hacerme un script para sacar cuando R2 es mayor que //0.3// por poner un numero, | ||
+ | <code perl checkr2.pl> | ||
+ | # | ||
+ | |||
+ | use strict; | ||
+ | use warnings; | ||
+ | use Data::Dump qw(dump); | ||
+ | |||
+ | my $ifile = " | ||
+ | my $thresh = 0.3; | ||
+ | my %model; | ||
+ | open IDF, "< | ||
+ | while (< | ||
+ | if (/-------/ && $model{" | ||
+ | print $model{" | ||
+ | }; | ||
+ | if (/^NP:.*/) {($model{" | ||
+ | if (/^R2:.*/) {($model{" | ||
+ | if (/ | ||
+ | } | ||
+ | close IDF; | ||
+ | </ | ||
+ | |||
+ | Para todos, | ||
+ | |||
+ | < | ||
+ | [osotolongo@detritus dti_model]$ ./ | ||
+ | Analizing facehbi_dti_np_models_all.txt ... | ||
+ | |||
+ | DMN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.302226155665606, | ||
+ | pv_DMN_FA = 0.883576950793585, | ||
+ | |||
+ | LN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.302579788141454, | ||
+ | pv_LN_FA = 0.731754149108559, | ||
+ | |||
+ | SN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.302699583800708, | ||
+ | pv_SN_FA = 0.698477685239432, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.303857285316447, | ||
+ | pv_FPCustom_FA = 0.495322950618766, | ||
+ | </ | ||
+ | |||
+ | //APOE 0// | ||
+ | |||
+ | < | ||
+ | [osotolongo@detritus dti_model]$ ./ | ||
+ | Analizing facehbi_dti_np_models_0.txt ... | ||
+ | |||
+ | DMN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.379552223636583, | ||
+ | pv_DMN_FA = 0.639790744923555, | ||
+ | |||
+ | LN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.373746758451691, | ||
+ | pv_LN_FA = 0.922726301726418, | ||
+ | |||
+ | SN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.373504904382816, | ||
+ | pv_SN_FA = 0.978604565669928, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.376679557258316, | ||
+ | pv_FPCustom_FA = 0.734462972707933, | ||
+ | |||
+ | DMN_FA, memoria_wms | ||
+ | r2 = 0.384900678414176, | ||
+ | pv_DMN_FA = 0.971755525011924, | ||
+ | |||
+ | LN_FA, memoria_wms | ||
+ | r2 = 0.476189288707085, | ||
+ | pv_LN_FA = 0.0571602758952463, | ||
+ | |||
+ | SN_FA, memoria_wms | ||
+ | r2 = 0.4105573407532, | ||
+ | pv_SN_FA = 0.327134537994976, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.38938771125582, | ||
+ | pv_FPCustom_FA = 0.683663237630694, | ||
+ | </ | ||
+ | |||
+ | //APOE 1// --> **nada** | ||
+ | |||
+ | //APOE 2// | ||
+ | |||
+ | < | ||
+ | [osotolongo@detritus dti_model]$ ./ | ||
+ | Analizing facehbi_dti_np_models_2.txt ... | ||
+ | |||
+ | DMN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.485798156550142, | ||
+ | pv_DMN_FA = 0.00443564461139048, | ||
+ | |||
+ | LN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.391142446695136, | ||
+ | pv_LN_FA = 0.298247246087403, | ||
+ | |||
+ | SN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.473679765360014, | ||
+ | pv_SN_FA = 0.0075840881661726, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.420481875101633, | ||
+ | pv_FPCustom_FA = 0.0767718841930776, | ||
+ | |||
+ | DMN_FA, memoria_fnameProf | ||
+ | r2 = 0.327588088792215, | ||
+ | pv_DMN_FA = 0.773974302319369, | ||
+ | |||
+ | LN_FA, memoria_fnameProf | ||
+ | r2 = 0.382914152316493, | ||
+ | pv_LN_FA = 0.0561917139565343, | ||
+ | |||
+ | SN_FA, memoria_fnameProf | ||
+ | r2 = 0.327676768593875, | ||
+ | pv_SN_FA = 0.76680425794751, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.331099185559454, | ||
+ | pv_FPCustom_FA = 0.584035234528739, | ||
+ | |||
+ | DMN_FA, memoria_fnameNom | ||
+ | r2 = 0.328367049483929, | ||
+ | pv_DMN_FA = 0.898296424312723, | ||
+ | |||
+ | LN_FA, memoria_fnameNom | ||
+ | r2 = 0.330867944990235, | ||
+ | pv_LN_FA = 0.679077371093828, | ||
+ | |||
+ | SN_FA, memoria_fnameNom | ||
+ | r2 = 0.331778400581458, | ||
+ | pv_SN_FA = 0.633252108652689, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.334618953643581, | ||
+ | pv_FPCustom_FA = 0.524784142484717, | ||
+ | |||
+ | DMN_FA, memoria_wms | ||
+ | r2 = 0.30272247894919, | ||
+ | pv_DMN_FA = 0.228059068988977, | ||
+ | |||
+ | </ | ||
+ | |||
+ | Voy a mirar un poco, | ||
+ | |||
+ | <code R> | ||
+ | > m0 <- lm(okdata0$funcioExecutiva_velocprocess_IM ~ okdata0$SUVR + okdata0$Edad) | ||
+ | > summary(m0) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata0$funcioExecutiva_velocprocess_IM ~ okdata0$SUVR + | ||
+ | okdata0$Edad) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.3337 -0.5111 -0.1135 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata0$SUVR -6.70012 | ||
+ | okdata0$Edad | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.9002 on 26 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | |||
+ | > m1 <- lm(okdata1$funcioExecutiva_velocprocess_IM ~ okdata1$SUVR + okdata1$Edad) | ||
+ | > summary(m1) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata1$funcioExecutiva_velocprocess_IM ~ okdata1$SUVR + | ||
+ | okdata1$Edad) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.2138 -0.5730 -0.1959 | ||
+ | |||
+ | Coefficients: | ||
+ | Estimate Std. Error t value Pr(> | ||
+ | (Intercept) | ||
+ | okdata1$SUVR | ||
+ | okdata1$Edad | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.8937 on 118 degrees of freedom | ||
+ | (1 observation deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | |||
+ | > m2 <- lm(okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$SUVR + okdata2$Edad) | ||
+ | > summary(m2) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata2$funcioExecutiva_velocprocess_IM ~ okdata2$SUVR + | ||
+ | okdata2$Edad) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -1.74708 -0.28264 -0.07348 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata2$SUVR | ||
+ | okdata2$Edad | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.8034 on 46 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | |||
+ | ===== Riesgo - No riesgo ===== | ||
+ | |||
+ | Vamosaplantear el problema de manera distinta. Supongamos que la contribucion del APOE depende solo de la presencia del alelo $\epsilon$-4 y clasifiquemos los sujetos segun esto, en //con riesgo// o //sin riesgo//. | ||
+ | |||
+ | <code R> | ||
+ | > okdata$Risk <- ifelse (okdata$APOE==2 , 1, 0) | ||
+ | </ | ||
+ | |||
+ | Pero ahora voy a hacer una cosa un poco mas complicada, | ||
+ | |||
+ | <code R get_lms2.r> | ||
+ | library(QuantPsyc) | ||
+ | x< | ||
+ | Color=c(" | ||
+ | scan(" | ||
+ | scan(" | ||
+ | sink(file = " | ||
+ | |||
+ | for(i in 1: | ||
+ | for(j in 1: | ||
+ | y.data <- x[c(ni[j], np[i], " | ||
+ | y.data <- y.data[complete.cases(y.data), | ||
+ | a <- lm( paste (' | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | writeLines(paste(" | ||
+ | beta <- lm.beta(a) | ||
+ | for(k in 1: | ||
+ | writeLines(paste(names(beta[k]), | ||
+ | } | ||
+ | writeLines(paste(" | ||
+ | } | ||
+ | } | ||
+ | sink() | ||
+ | </ | ||
+ | |||
+ | Asi que pruebo con el global, | ||
+ | |||
+ | <code R> | ||
+ | > write.csv(okdata, | ||
+ | > source(" | ||
+ | </ | ||
+ | |||
+ | y luego, | ||
+ | |||
+ | <code bash> | ||
+ | [osotolongo@detritus dti_model]$ ./ | ||
+ | Analizing facehbi_dti_np_models.txt ... | ||
+ | |||
+ | DMN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.312799089824939, | ||
+ | pv_DMN_FA = 0.476462254461098, | ||
+ | |||
+ | SN_FA, funcioExecutiva_velocprocess_IM | ||
+ | r2 = 0.311504329049638, | ||
+ | pv_SN_FA = 0.551975051522526, | ||
+ | |||
+ | FPCustom_FA, | ||
+ | r2 = 0.311678871879767, | ||
+ | pv_FPCustom_FA = 0.151421806156447, | ||
+ | </ | ||
+ | |||
+ | puaf, a ver, | ||
+ | |||
+ | <code R> | ||
+ | > m <- lm(okdata$funcioExecutiva_velocprocess_IM ~ okdata$SUVR + okdata$Edad + okdata$Escolaridad + okdata$female + okdata$DMN_FA*okdata$Risk) | ||
+ | > summary(m) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = okdata$funcioExecutiva_velocprocess_IM ~ okdata$SUVR + | ||
+ | okdata$Edad + okdata$Escolaridad + okdata$female + okdata$DMN_FA * | ||
+ | okdata$Risk) | ||
+ | |||
+ | Residuals: | ||
+ | Min 1Q Median | ||
+ | -1.4094 -0.5672 -0.1264 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | okdata$SUVR | ||
+ | okdata$Edad | ||
+ | okdata$Escolaridad | ||
+ | okdata$female | ||
+ | okdata$DMN_FA | ||
+ | okdata$Risk | ||
+ | okdata$DMN_FA: | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 0.8286 on 188 degrees of freedom | ||
+ | (4 observations deleted due to missingness) | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | No, gracias. :-\ | ||
neuroimagen/altdti.1552643600.txt.gz · Last modified: 2020/08/04 10:46 (external edit)